关灯
收起左侧

[考研经验] 24考研 | 华南理工大学623数学分析、823高等代数考研官方参...

0
回复
1284
查看
[复制链接]

5652

主题

23

回帖

2万

积分

超级版主

积分
27462
发表于 2023-11-20 10:29:50 | 显示全部楼层 |阅读模式
 
24招生目录已出,小编为大家整理了最新考试科目和参考书目等信息,考研考试大纲是考研试题命制的风向标,考查内容、目标的调整都会对今年的考题产生影响。

所以24/25华工考生在备考的同时一定不要忘记查看考研大纲的变化,希望对各位考生有所帮助。

今天,小编给大家分享一下,备战华工623|数学分析、 823|高等代数考研官方选读书目

1
初试参考书目
101|思想政治理论
全国统考科目,考试大纲、考试题型以教育部公布为准。
201|英语(一)
全国统考科目,考试大纲、考试题型以教育部公布为准。
623|数学分析
【1】《数学分析》(上、下册),复旦大学数学系编,高等教育出版社;
【2】《数学分析》(上、下册),华东师范大学数学系编,高等教育出版社;
823|高等代数
【1】《高等代数》(第四版)北京大学数学系几何与代数教研室代数小组编,王萼芳、石生明修订,高等教育出版社

2
623数学分析
823高等代数
623|数学分析
《数学分析》(上、下册)
微信图片_20231120102917.png
《数学分析》(上、下册),复旦大学数学系编,高等教育出版社;

《数学分析》(上、下册)
微信图片_20231120102919.png
《数学分析》(上、下册),华东师范大学数学系编,高等教育出版社;

823|高等代数
《高等代数》
微信图片_20231120102921.jpg
《高等代数》(第四版)北京大学数学系几何与代数教研室代数小组编,王萼芳、石生明修订,高等教育出版社

3
考试内容/考试要求
623数学分析
考试内容和考试要求
考试基本要求
1. 熟练掌握数学分析的基本概念、命题、定理;
2.综合运用所学的数学分析的知识的能力
考试内容(或知识点)
1.数列极限
数列、数列极限的 定义,收敛数列——唯一性、有界性、保号性、不等式性、迫敛性、四则运算,单调有界数列极限存在定理。柯西准则,重要极限。
2.函数极限
函数极限。定义, 定义,单侧极限,函数极限的性质——唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算、归结原则(Heine 定理)。函数极限的柯西准则。
无穷小量及其阶的比较,无穷大量及其阶的比较,渐近线。
3.函数的连续性
函数在一点的连续性、单侧连续性、间断点及其分类。在区间上连续的函数,连续函数的局部性质——有界性、保号性。连续函数的四则运算。复合函数的连续性。
闭区间上连续函数的性质——有界性、取得最大值最小值性、介值性、一致连续性、反函数的连续性,初等函数连续性。
4.导数和微分
导数定义,单侧导数、导函数、导数的几何意义、费马( Fermat)定理。和、积、商的导数、反函数的导数、复合函数的导数、初等函数的导数、参变量函数的导数、高阶导数、微分概念、微分的几何意义、微分的运算法则。
5.微分中值定理
Roll、Lagrange、Cauchy中值定理,不定式极限,洛比达(L’Hospital)法则,泰勒(Taylor)定理。(泰勒公式及其皮亚诺余项、拉格朗日余项、积分型余项)。极值、最大值与最小值。曲线的凸凹性。拐点,函数图的讨论。
6.实数的完备性
区间套定理,数列的柯西(Cauchy)收敛准则,聚点原理,有界数列存在收敛子列,有限覆盖定理。
7.不定积分
原函数与不定积分,换元积分法、分部积分法,有理函数积分法,三角函数有理式的积分法,几种无理根式的积分。
8.定积分
牛顿——莱布尼茨公式,可积的必要条件,可积的充要条件,可积函数类。绝对可积性,积分中值定理,微积分学基本定理。换元积分法,分部积分法。
9.定积分的应用
简单平面图形面积。有平行截面面积求体积,曲线的弧长与微分。微元法、旋转体体积与侧面积,物理应用(引力、功等)。
10.反常积分
无穷限反常积分概念、柯西准则,绝对收敛、无穷限反常积分收敛性判别法:比较判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法。无界函数反常积分概念,无界函数反常积分收敛性判别法。
11.数项级数
级数收敛与和,柯西准则,收敛级数的基本性质,正项级数比较原则。比式判别法与根式判别法、积分判别法。一般项级数的绝对收敛与条件收敛,交错级数,莱布尼茨判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法。绝对收敛级数的重排定理。
12.函数列与函数项级数
函数列与函数项级数的收敛与一致收敛概念,一致收敛的柯西准则。函数项级数的维尔斯特拉斯(Weierstrass)优级数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法,函数列极限函数与函数项级数和的连续性、逐项积分与逐项求导。
13.幂级数
幂级数的收敛半径与收敛区间,一致收敛性、连续性、逐项积分与逐项求导,幂级数的四则运算。
泰勒级数、泰勒展开的条件,初等函数的泰勒展开。
14.傅里叶(Fourier)级数
三角级数、三角函数系的正交性、傅里叶(Fourier)级数,贝塞尔(Bessel)不等式,黎曼——勒贝格定理,按段光滑且以2π为周期的函数展开,傅里叶级数的收敛定理,以2π为周期的函数的傅里叶级数,奇函数与偶函数的傅里叶级数。
15.多元函数的极限和连续
平面点集概念(邻域、内点、界点、开集、闭集、开域、闭域),平面点集的基本定理——区域套定理、聚点原理、有限覆盖定理。
二元函数概念。二重极限、累次极限,二元函数的连续性、复合函数的连续性定理、有界闭域上连续函数的性质。
16.多元函数的微分学
偏导数及其几何意义,全微分概念,全微分的几何意义,全微分存在的充分条件,全微分在近似计算中的应用,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,混合偏导数与其顺序无关性,高阶导数,高阶微分,二元函数的泰勒定理,二元函数的极值。
17.隐函数定理
隐函数概念、隐函数定理、隐函数求导。
隐函数组概念、隐函数组定理、隐函数组求导、反函数组与坐标变换,函数行列式。
几何应用,条件极值与拉格朗日乘数法。
18.含参量积分
含参量积分概念、连续性、可积性与可微性,积分顺序的交换。
含参量反常积分的收敛与一致收敛,一致收敛的柯西准则。维尔斯特拉斯(Weierstrass)判别法。连续性、可积性与可微性,Gamma函数。
19.曲线积分
第一型和第二型曲线积分概念与计算,两类曲线积分的联系。
20.重积分
二重积分定义与存在性,二重积分性质,二重积分计算(化为累次积分)。格林(Green)公式,曲线积分与路径无关条件。二重积分的换元法(极坐标与一般变换)。
三重积分定义与计算,三重积分的换元法(柱坐标、球坐标与一般变换)。
重积分应用(体积,曲面面积,重心、转动惯量、引力等)。
无界区域上的收敛性概念。无界函数反常二重积分。
在一般条件下重积分变量变换公式。
21.曲面积分
曲面的侧。第一型和第二型曲面积分概念与计算,高斯公式。斯托克斯公式。
场论初步(梯度场、散度场、旋度场)。


823高等代数
考试内容和考试要求
考试基本要求
1. 熟练掌握高等代数的基本概念、命题、定理;
2.综合运用所学的高等代数的知识的能力。

考试内容(或知识点)
1.多项式
数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式,多元多项式,对称多项式。

2. 行列式 
排列,n级行列式的定义,n级行列式的性质,n级行列式的展开,行列式按一行(列)展开,克拉默(Cramer)法则,拉普拉斯(Laplace)定理,行列式的乘法规则。

3. 线性方程组
消元法,n维向量空间,线性相关性,矩阵的秩,线性方程组有解判别定理,线性方程组解的结构。

4. 矩阵
矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换及应用。

5. 二次型
二次型的矩阵表示,标准型,唯一性,正定(半正定)二次型。

6. 线性空间
集合、映射,线性空间的定义与简单性质,维数、基与坐标,基变换与坐标变换,线性子空间,子空间的交与和,子空间的直和,线性空间的同构。

7. 线性变换
线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,若当(Jordan)标准形介绍,最小多项式。

8. λ-矩阵
λ-矩阵的定义,λ-矩阵在初等变换下的标准型,不变因子,矩阵相似的条件,初等因子,若当(Jordan)标准形的理论推导,矩阵的有理标准形。

9. 欧几里得空间
定义与基本性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形,向量到子空间的距离与最小二乘法。

10. 双线性函数
线性函数,对偶空间,双线性函数,对称(反对称)双线性函数。
华工论坛底部图.png
回复

使用道具 举报

 
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关注我们:微信订阅号

官方微信

官方公众号

公司服务热线:

18819151593

公司地址:广州市番禺区大学城明志街1号广州大学城信息枢纽楼812

运营中心:广州市番禺区大学城明志街1号广州大学城信息枢纽楼812

邮编:510000 Email:huagongkaoyan@foxmail.com

Copyright   ©2017-2021  华南理工大学考研论坛_华工考研论坛_华工考研辅导网©技术支持:考研院    ( 粤ICP备19157446号 )